Hidden Markov Mixture Autoregressive Models: Stability and Moments
نویسندگان
چکیده
منابع مشابه
Mixture autoregressive hidden Markov models for speech signals
In this paper a signal modeling technique based upon finite mixture autoregressive probabilistic functions of Markov chains is developed and applied to the problem of speech recognition, particularly speaker-independent recognition of isolated digits. Two types of mixture probability densities are investigated: finite mixtures of Gaussian autoregressive densities (GAM) and nearest-neighbor part...
متن کاملNonlinear mixture autoregressive hidden Markov models for speech recognition
Gaussian mixture models are a very successful method for modeling the output distribution of a state in a hidden Markov model (HMM). However, this approach is limited by the assumption that the dynamics of speech features are linear and can be modeled with static features and their derivatives. In this paper, a nonlinear mixture autoregressive model is used to model state output distributions (...
متن کاملA Method of Moments for Mixture Models and Hidden Markov Models
Mixture models are a fundamental tool in applied statistics and machine learning for treating data taken from multiple subpopulations. The current practice for estimating the parameters of such models relies on local search heuristics (e.g., the EM algorithm) which are prone to failure, and existing consistent methods are unfavorable due to their high computational and sample complexity which t...
متن کاملMixture Hidden Markov Models in Finance Research
Finite mixture models have proven to be a powerful framework whenever unobserved heterogeneity cannot be ignored. We introduce in finance research the Mixture Hidden Markov Model (MHMM) that takes into account time and space heterogeneity simultaneously. This approach is flexible in the sense that it can deal with the specific features of financial time series data, such as asymmetry, kurtosis,...
متن کاملRecursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime
This paper is concerned with recursive algorithms for the estimation of hidden Markov models (HMMs) and autoregressive (AR) models under Markov regime. Convergence and rate of convergence results are derived. Acceleration of convergence by averaging of the iterates and the observations are treated. Finally, constant step-size tracking algorithms are presented and examined.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics - Theory and Methods
سال: 2013
ISSN: 0361-0926,1532-415X
DOI: 10.1080/03610926.2011.593283